Physical and digital books, media, journals, archives, and databases.
Results include
  1. CZT nanoRAIDER_VFG Factsheet [electronic resource].

    Washington, D.C. : United States. National Nuclear Security Administration ; Oak Ridge, Tenn. : distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2016

    Brookhaven National Laboratory (BNL) is working with FLIR System Inc., the manufacturer of the nanoRAIDER, to design a handheld device based on a position-sensitive virtual Frisch-grid (VFG) Cadmium-Zinc-Telluride (CdZnTe or CZT) detector array (with 1% or better energy resolution). The new device called nanoRAIDER VFG will be an improvement to the current nanoRAIDER, which is a compact gamma-ray detection instrument manufactured by FLIR Systems Inc. that employs relatively lower-performing CZT hemispheric detectors (i.e., 3%-FWHM CZT detectors). The nanoRAIDER will significantly improve the accuracy while maintaining similar efficiency, as compared to the nanoRAIDER, for in-field analysis of nuclear materials and detection of undeclared activities during inspections conducted by the International Atomic Energy Agency (IAEA). Since the nanoRAIDER is currently used by the IAEA as part of its Complementary Access toolkit, a relatively quick acceptance of the nanoRAIDER VFG for safeguards is anticipated. The nanoRAIDER VFG will help address several items listed in the IAEA’s Long-Term R&D Plan that could enhance the abilities to detect undeclared nuclear material and activities.

    Online OSTI

  2. Handheld CZT radiation detector [electronic resource]

    Washington, D.C. : United States. Dept. of Energy. ; Oak Ridge, Tenn. : distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2004

    A handheld CZT radiation detector having a CZT gamma-ray sensor, a multichannel analyzer, a fuzzy-logic component, and a display component is disclosed. The CZT gamma-ray sensor may be a coplanar grid CZT gamma-ray sensor, which provides high-quality gamma-ray analysis at a wide range of operating temperatures. The multichannel analyzer categorizes pulses produce by the CZT gamma-ray sensor into channels (discrete energy levels), resulting in pulse height data. The fuzzy-logic component analyzes the pulse height data and produces a ranked listing of radioisotopes. The fuzzy-logic component is flexible and well-suited to in-field analysis of radioisotopes. The display component may be a personal data assistant, which provides a user-friendly method of interacting with the detector. In addition, the radiation detector may be equipped with a neutron sensor to provide an enhanced mechanism of sensing radioactive materials.

    Online OSTI

  3. CZT DTRA final report [electronic resource]

    Washington, D.C. : United States. Dept. of Energy. ; Oak Ridge, Tenn. : distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2017

    The objective of the project is to understand the physical origin of electronic noise injected by the electrical contacts in CZT and CdTe, and moreover to understand how it impacts the current- voltage (IV) relationships of these materials. This understanding is critical to enabling the next crucial enhancement in the performance of CZT radiation detectors, as there have recently been impressive advancements in the growth of CZT crystals, particularly at our commercial partner Redlen Technologies. Redlen scientists have successfully reduced the size of the transport-inhibiting tellurium precipitates to be <3 micrometers, such that, with sufficiently high fields, it is possible to achieve resolution of <1% at 662 keV using suitable electrode geometries. In contrast to the excellent progress in crystal growth, practitioners in the field of radiation detection have been fabricating rather routine contacts on CZT for nearly two decades; there is no basic understanding of the semiconductor physics of the contacts, and consequently no breakthrough progress in this area. Our objective is to resolve this inadequacy in CZT diode fabrication on the basis of a science-based study, such that CZT detectors can achieve their full promise in performance as superior contacts will enable use of higher fields with lower leakage current – thereby enhancing the resolution that is possible while eliminating the well-known “tailing” effect suffered by the photopeak. Our approach is to develop methods that reduce or eliminate leakage currents in CZT devices through “engineering” the surfaces with novel treatments and structures. This includes using high density plasma etching, doping via ion implantation and metal diffusion, rapid thermal annealing, amorphous semiconductor and dielectric films, and controlled oxide growth. Using these methods, sources of injected and generated noise at the surface can be eliminated via plasma etching and film deposition or oxide growth, while advanced junctions (both homo- and heterojunctions) can be created to eliminate current injection from the metal contacts. The work involves the fabrication and characterization of CZT having a variety of contact structures. Tools capable of evaporating and sputtering metals, together with the usual lithographic and chemical processing methods, are employed. The CZT material employed will be of the highest quality available (Redlen Technologies), and we are engaging Prof. Burger of Fisk University, who is internationally recognized as one of the most accomplished materials physicists in the field on radiation detectors. We have also begun collaborating with Prof. Nicholas Kioussis of Cal State Northridge, Srivananthan Labs (Bolingbrook, IL), and Mark Amman of Lawrence Berkeley National Laboratory, all funded separately by DTRA.

    Online OSTI

Guides

Course- and topic-based guides to collections, tools, and services.
No guide results found... Try a different search

Library website

Library info; guides & content by subject specialists
No website results found... Try a different search

Exhibits

Digital showcases for research and teaching.
No exhibits results found... Try a different search

EarthWorks

Geospatial content, including GIS datasets, digitized maps, and census data.
No earthworks results found... Try a different search

More search tools

Tools to help you discover resources at Stanford and beyond.