Physical and digital books, media, journals, archives, and databases.
Results include
  1. Hardness and microstructural inhomogeneity at the epitaxial interface of laser 3D-printed Ni-based superalloy [electronic resource].

    Washington, D.C. : United States. Dept. of Energy. Office of Basic Energy Sciences ; Oak Ridge, Tenn. : distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2016

    Here in this letter, microstructural and mechanical inhomogeneities, a great concern for single crystal Ni-based superalloys repaired by laser assisted 3D printing, have been probed near the epitaxial interface. Nanoindentation tests show the hardness to be uniformly lower in the bulk of the substrate and constantly higher in the epitaxial cladding layer. A gradient of hardness through the heat affected zone is also observed, resulting from an increase in dislocation density, as indicated by the broadening of the synchrotron X-ray Laue microdiffraction reflections. Lastly, the hardening mechanism of the claddin g region, on the other hand, is shown to originate not only from high dislocation density but also and more importantly from the fine γ/γ' microstructure.

    Online OSTI

Guides

Course- and topic-based guides to collections, tools, and services.
No guide results found... Try a different search

Library website

Library info; guides & content by subject specialists
No website results found... Try a different search

Exhibits

Digital showcases for research and teaching.
No exhibits results found... Try a different search

EarthWorks

Geospatial content, including GIS datasets, digitized maps, and census data.
No earthworks results found... Try a different search

More search tools

Tools to help you discover resources at Stanford and beyond.