Physical and digital books, media, journals, archives, and databases.
Results include
  1. Beam foil spectroscopy of N = 3 to N = 2 transitions in highly stripped heavy ions. Revision 1 [electronic resource].

    Livermore, Calif : Lawrence Livermore National Laboratory ; Oak Ridge, Tenn. : distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 1986

    The spectroscopy of very highly ionized atoms provides an important testing ground for multi-electron atomic theory. We report preliminary experimental results on the n = 3 ..-->.. 2 spectra of Bi/sup +73/ and A/sup +69/ obtained at the GSI UNILAC accelerator. 19 refs., 4 figs.

    Online OSTI

  2. The 11 years solar cycle as the manifestation of the dark Universe [electronic resource].

    Washington, D.C. : United States. Dept. of Energy. High Energy Physics Division ; Oak Ridge, Tenn. : distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2014

    Sun’s luminosity in the visible changes at the 10-3 level, following an 11 years period. In X-rays, which should not be there, the amplitude varies even ~105 times stronger, making their mysterious origin since the discovery in 1938 even more puzzling, and inspiring. We suggest that the multifaceted mysterious solar cycle is due to some kind of dark matter streams hitting the Sun. Planetary gravitational lensing enhances (occasionally) slow moving flows of dark constituents towards the Sun, giving rise to the periodic behaviour. Jupiter provides the driving oscillatory force, though its 11.8 years orbital period appears slightly decreased, just as 11 years, if the lensing impact of other planets is included. Then, the 11 years solar clock may help to decipher (overlooked) signatures from the dark sector in laboratory experiments or observations in space.

    Online OSTI

  3. Initiation of long, free-standing Z-discharges by CO2 laser gas heating [electronic resource].

    Washington, D.C. : United States. Dept. of Energy ; Oak Ridge, Tenn. : distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2004

    High current discharge channels can neutralize both current and space charge of very intense ion beams. Therefore they are considered as an interesting alternative for the final focus and beam transport in a heavy ion beam fusion reactor. At the GSI accelerator facility, 50 cm long, stable, free-standing discharge channels with currents in excess of 40 kA in 2 to 25 mbar ammonia (NH₃) gas are investigated for heavy ion beam transport studies. The discharges are initiated by a CO₂ laser pulse along the channel axis before the discharge is triggered. Resonant absorption of the laser, tuned to the ν₂ vibration of the ammonia molecule, causes strong gas heating. Subsequent expansion and rarefaction of the gas prepare the conditions for a stable discharge to fulfill the requirements for ion beam transport. This paper describes the laser-gas interaction and the discharge initiation mechanism. We report on the channel stability and evolution, measured by fast shutter and streak imaging techniques. The rarefaction of the laser heated gas is studied by means of a hydrocode simulation.

    Online OSTI

Guides

Course- and topic-based guides to collections, tools, and services.
No guide results found... Try a different search

Library website

Library info; guides & content by subject specialists
No website results found... Try a different search

Exhibits

Digital showcases for research and teaching.
No exhibits results found... Try a different search

EarthWorks

Geospatial content, including GIS datasets, digitized maps, and census data.
No earthworks results found... Try a different search

More search tools

Tools to help you discover resources at Stanford and beyond.