Physical and digital books, media, journals, archives, and databases.
Results include
  1. Ocean-atmosphere interaction and climate modelling

    Kagan, B. A. (Boris Abramovich)
    Cambridge [England] ; New York : Cambridge University Press, 1995.

    This 1995 text is addressed to advanced students in oceanography, meteorology and environmental sciences, as well as to professional researchers in these fields. It aims to acquaint them with advances in experimental and theoretical investigations of ocean-atmosphere interactions, a rapidly developing field in earth sciences. Particular attention is paid to the scope and perspectives for satellite measurements and mathematical modeling. Approaches to the construction of coupled ocean-atmosphere models (from the simplest one-dimensional to the most comprehensive three-dimensional ones) for the solution of key problems in climate theory are discussed in detail. Field measurements and the results of numerical climate simulations are presented, to help understand the variability arising from various natural and anthropogenic factors.

  2. An ocean-atmosphere interaction experiment for the Arctic

    [Santa Monica, Calif. : Rand Corp., 1969]

  3. Collaborative project. Ocean-atmosphere interaction from meso-to planetary-scale. Mechanisms, parameterization, and variability [electronic resource]

    Washington, D.C. : United States. Dept. of Energy. Office of Science ; Oak Ridge, Tenn. : distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2015

    This project aims to improve long term global climate simulations by resolving ocean mesoscale activity and the corresponding response in the atmosphere. The main computational objectives are; i) to perform and assess Community Earth System Model (CESM) simulations with the new Community Atmospheric Model (CAM) spectral element dynamical core; ii) use static mesh refinement to focus on oceanic fronts; iii) develop a new Earth System Modeling tool to investigate the atmospheric response to fronts by selectively filtering surface flux fields in the CESM coupler. The climate research objectives are 1) to improve the coupling of ocean fronts and the atmospheric boundary layer via investigations of dependency on model resolution and stability functions: 2) to understand and simulate the ensuing tropospheric response that has recently been documented in observations: and 3) to investigate the relationship of ocean frontal variability to low frequency climate variability and the accompanying storm tracks and extremes in high resolution simulations. This is a collaborative multi-institution project consisting of computational scientists, climate scientists and climate model developers. It specifically aims at DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation.

    Online OSTI

Guides

Course- and topic-based guides to collections, tools, and services.
No guide results found... Try a different search

Library website

Library info; guides & content by subject specialists
No website results found... Try a different search

Exhibits

Digital showcases for research and teaching.
No exhibits results found... Try a different search

EarthWorks

Geospatial content, including GIS datasets, digitized maps, and census data.
No earthworks results found... Try a different search

More search tools

Tools to help you discover resources at Stanford and beyond.