Physical and digital books, media, journals, archives, and databases.
Results include
  1. Video coding : an introduction to standard codecs

    Ghanbari, M. (Mohammed)
    London : Institution of Electrical Engineers, c1999.

    This study offers an introduction to video coding algorithms for readers in electronic engineering, media, broadcasting and transmission. The text works up from basic principles to the advanced video compression systems now being developed, including MPEG 1,2,4 and 7, JPEG, H.261 and H.263.

  2. Video coding : the second generation approach

    Boston : Kluwer Academic, c1996.

    In recent years, there has been an increasing interest in Second Generation Image and Video Coding Techniques. These techniques introduce new concepts from image analysis that greatly improve the performance of the coding schemes for very high compression. This interest has been further emphasized by the future MPEG 4 standard. Second generation image and video coding techniques are the ensemble of approaches proposing new and more efficient image representations than the conventional canonical form. As a consequence, the human visual system becomes a fundamental part of the encoding/decoding chain.More insight to distinguish between first and second generation can be gained if it is noticed that image and video coding is basically carried out in two steps. First, image data are converted into a sequence of messages and, second, code words are assigned to the messages. Methods of the first generation put the emphasis on the second step, whereas methods of the second generation put it on the first step and use available results for the second step.As a result of including the human visual system, second generation can be also seen as an approach of seeing the image composed by different entities called objects. This implies that the image or sequence of images have first to be analyzed and/or segmented in order to find the entities. It is in this context that we have selected in this book three main approaches as second generation video coding techniques: Segmentation-based schemes; Model based schemes; and, Fractal based schemes. "Video Coding: The Second Generation Approach" is an important introduction to the new coding techniques for video. As such, all researchers, students and practitioners working in image processing will find this book of interest.

  3. Versatile video coding

    Dominguez, Humberto Ochoa
    Gistrup : River Publishers, 2018.

    Video is the main driver of bandwidth use, accounting for over 80 per cent of consumer Internet traffic. Video compression is a critical component of many of the available multimedia applications, it is necessary for storage or transmission of digital video over today's band-limited networks. The majority of this video is coded using international standards developed in collaboration with ITU-T Study Group and MPEG. The MPEG family of video coding standards begun on the early 1990s with MPEG-1, developed for video and audio storage on CD-ROMs, with support for progressive video. MPEG-2 was standardized in 1995 for applications of video on DVD, standard and high definition television, with support for interlaced and progressive video. MPEG-4 part 2, also known as MPEG-2 video, was standardized in 1999 for applications of low- bit rate multimedia on mobile platforms and the Internet, with the support of object-based or content based coding by modeling the scene as background and foreground. Since MPEG-1, the main video coding standards were based on the so-called macroblocks. However, research groups continued the work beyond the traditional video coding architectures and found that macroblocks could limit the performance of the compression when using high-resolution video. Therefore, in 2013 the high efficiency video coding (HEVC) also known and H.265, was released, with a structure similar to H.264/AVC but using coding units with more flexible partitions than the traditional macroblocks. HEVC has greater flexibility in prediction modes and transform block sizes, also it has a more sophisticated interpolation and de blocking filters. In 2006 the VC-1 was released. VC-1 is a video codec implemented by Microsoft and the Microsoft Windows Media Video (VMW) 9 and standardized by the Society of Motion Picture and Television Engineers (SMPTE). In 2017 the Joint Video Experts Team (JVET) released a call for proposals for a new video coding standard initially called Beyond the HEVC, Future Video Coding (FVC) or known as Versatile Video Coding (VVC). VVC is being built on top of HEVC for application on Standard Dynamic Range (SDR), High Dynamic Range (HDR) and 360 Degrees Video. The VVC is planned to be finalized by 2020. This book presents the new VVC, and updates on the HEVC. The book discusses the advances in lossless coding and covers the topic of screen content coding. Technical topics discussed include: - Beyond the High Efficiency Video Coding - High Efficiency Video Coding encoder - Screen content - Lossless and visually lossless coding algorithms - Fast coding algorithms - Visual quality assessment - Other screen content coding algorithms - Overview of JPEG Series.

    Online EBSCO Academic Comprehensive Collection

Guides

Course- and topic-based guides to collections, tools, and services.
No guide results found... Try a different search
Library info; guides & content by subject specialists

Exhibits

Digital showcases for research and teaching.
No exhibits results found... Try a different search

EarthWorks

Geospatial content, including GIS datasets, digitized maps, and census data.
No earthworks results found... Try a different search

More search tools

Tools to help you discover resources at Stanford and beyond.