Physical and digital books, media, journals, archives, and databases.
Results include
  1. Molecular Simulation of ab Initio Protein Folding for a Millisecond Folder NTL9(1-39)

    Voelz, Vincent
    October 8, 2009

    To date, the slowest-folding proteins folded ab initio by all-atom molecular dynamics simulations with fidelity to experimental kinetics have had folding times in the range of nanoseconds to microseconds. These include the designed mini-protein Trp-cage (∼4.1 μs), the villin headpiece domain (∼10 μs), a fast-folding variant of villin (<1 μs), and Fip35 WW domain (∼13 μs). In this communication, we report simulations of several folding trajectories, each from fully unfolded states, of the 39-residue protein NTL9(1-39), which experimentally has a folding time of ∼1.5 ms.

  2. Markov State Model of ACBP analyzed in "Slow unfolded-state structuring in Acyl-CoA binding protein folding revealed by simulation and experiment"

    Voelz, Vincent
    2012

    Protein folding is a fundamental process in biology, key to understanding many human diseases. Experimentally, proteins often appear to fold via simple two- or three-state mechanisms involving mainly native-state interactions, yet recent network models built from atomistic simulations of small proteins suggest the existence of many possible metastable states and folding pathways. We reconcile these two pictures in a combined experimental and simulation study of acyl-coenzyme A binding protein (ACBP), a two-state folder (folding time ~10 ms) exhibiting residual unfolded-state structure, and a putative early folding intermediate. Using single-molecule FRET in conjunction with side-chain mutagenesis, we first demonstrate that the denatured state of ACBP at near-zero denaturant is unusually compact and enriched in long-range structure that can be perturbed by discrete hydrophobic core mutations. We then employ ultrafast laminar-flow mixing experiments to study the folding kinetics of ACBP on the microsecond time scale. These studies, along with Trp-Cys quenching measurements of unfolded-state dynamics, suggest that unfolded-state structure forms on a surprisingly slow (~100 μs) time scale, and that sequence mutations strikingly perturb both time-resolved and equilibrium smFRET measurements in a similar way. A Markov state model (MSM) of the ACBP folding reaction, constructed from over 30 ms of molecular dynamics trajectory data, predicts a complex network of metastable stables, residual unfolded-state structure, and kinetics consistent with experiment but no well-defined intermediate preceding the main folding barrier. Taken together, these experimental and simulation results suggest that the previously characterized fast kinetic phase is not due to formation of a barrier-limited intermediate but rather to a more heterogeneous and slow acquisition of unfolded-state structure.

  3. Atomistic Folding Simulations of the Five-Helix Bundle Protein λ6− 85

    Bowman, Gregory
    2011

    Protein folding is a classic grand challenge that is relevant to numerous human diseases, such as protein misfolding diseases like Alzheimer’s disease. Solving the folding problem will ultimately require a combination of theory, simulation, and experiment, with theory and simulation providing an atomically detailed picture of both the thermodynamics and kinetics of folding and experimental tests grounding these models in reality. However, theory and simulation generally fall orders of magnitude short of biologically relevant time scales. Here we report significant progress toward closing this gap: an atomistic model of the folding of an 80-residue fragment of the λ repressor protein with explicit solvent that captures dynamics on a 10 milliseconds time scale. In addition, we provide a number of predictions that warrant further experimental investigation. For example, our model’s native state is a kinetic hub, and biexponential kinetics arises from the presence of many free-energy basins separated by barriers of different heights rather than a single low barrier along one reaction coordinate (the previously proposed incipient downhill folding scenario).

Guides

Course- and topic-based guides to collections, tools, and services.
No guide results found... Try a different search

Library website

Library info; guides & content by subject specialists
No website results found... Try a different search

Exhibits

Digital showcases for research and teaching.
No exhibits results found... Try a different search

EarthWorks

Geospatial content, including GIS datasets, digitized maps, and census data.
No earthworks results found... Try a different search

More search tools

Tools to help you discover resources at Stanford and beyond.