Physical and digital books, media, journals, archives, and databases.
Results include
  1. Rhenium : properties, uses, and occurrence

    New York : Novinka, [2017]

    Rhenium (Re), a very scarce element in nature was the last naturally available element to be discovered in 1925. Re is one of the rarest metals, found in the Earth's crust. The authors of this book provide a review of the discovery of rhenium and it's consequences. They also present an overview of the most significant applications of oxo-rhenium complexes as catalysts in organic chemistry, and the valorisation of mineral resources in Portugal.

    Online EBSCO Academic Comprehensive Collection

  2. Homogeneous catalysts [electronic resource] : activity-stability-deactivation

    Leeuwen, P. W. N. M. van (Piet W. N. M.)
    Weinheim : Wiley-VCH Verlag, c2011.

    This first book to illuminate this important aspect of chemical synthesis improves the lifetime of catalysts, thus reducing material and saving energy, costs and waste. The international panel of expert authors describes the studies that have been conducted concerning the way homogeneous catalysts decompose, and the differences between homogeneous and heterogeneous catalysts. The result is a ready reference for organic, catalytic, polymer and complex chemists, as well as those working in industry and with/on organometallics.

    Online onlinelibrary.wiley.com

  3. Push or Pull? Proton Responsive Ligand Effects in Rhenium Tricarbonyl CO <sub>2</sub> Reduction Catalysts [electronic resource].

    Washington, D.C. : United States. Dept. of Energy. Office of Basic Energy Sciences ; Oak Ridge, Tenn. : distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2015

    Proton responsive ligands offer control of catalytic reactions through modulation of pH-dependent properties, second coordination sphere stabilization of transition states, or by providing a local proton source for multi-proton, multi-electron reactions. Two fac-[ReI(α-diimine)(CO)₃Cl] complexes with α-diimine = 4,4'- (or 6,6'-) dihydroxy-2,2'-bipyridine (4DHBP and 6DHBP) have been prepared and analyzed as electrocatalysts for reduction of carbon dioxide. Consecutive electrochemical reduction of these complexes yields species identical to those obtained by chemical deprotonation. An energetically feasible mechanism for reductive deprotonation is proposed in which the bpy anion is protonated followed by loss of H₂ and 2H⁺. Cyclic voltammetry reveals a two-electron, three-wave system owing to competing EEC and ECE pathways. The chemical step of the ECE pathway might be attributed to the reductive deprotonation. but cannot be distinguished from chloride dissociation. The rate obtained by digital simulation is approximately 8 s⁻¹. Under CO₂, these competing reactions generate a two-slope catalytic waveform with onset potential of –1.65 V vs Ag/AgCl. Reduction of CO₂ to CO by the [ReI (4DHBP–2H⁺)(CO)₃]⁻ suggests the interaction of CO₂ with the deprotonated species or a third reduction followed by catalysis. Conversely, the reduced form of [Re(6DHBP)(CO)₃Cl] converts CO₂ to CO with a single turnover.

    Online OSTI

Guides

Course- and topic-based guides to collections, tools, and services.
No guide results found... Try a different search

Library website

Library info; guides & content by subject specialists
No website results found... Try a different search

Exhibits

Digital showcases for research and teaching.
No exhibits results found... Try a different search

EarthWorks

Geospatial content, including GIS datasets, digitized maps, and census data.
No earthworks results found... Try a different search

More search tools

Tools to help you discover resources at Stanford and beyond.