Physical and digital books, media, journals, archives, and databases.
Results include
  1. Structure sensitive adsorption of hydrogen on ruthenium and ruthenium-silver catalysts supported on silica [electronic resource]

    Washington, D.C. : United States. Dept. of Energy. Office of Energy Research ; Oak Ridge, Tenn. : distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 1999

    Supported metal catalysts typically consist of particles with sizes less than 10 nm, and because of the small crystallite size, low coordination number sites (edges and corners) represent a significant fraction of all surface sites. Furthermore, it has been demonstrated that adsorption rates can be much greater at these low coordination sites than on basal plane sites. What has not been generally appreciated, however, is that preferential adsorption at edge and corner sites may explain the mechanism by which a promoter, or the addition of a second metal to form a bimetallic, can alter the selectivity and rate of reaction. For example, the measurements of hydrogen adsorption onto supported Ru-Ag catalysts show marked decreases in the amount of hydrogen adsorbed relative to the amount adsorbed on Ru catalysts. Although it is known that Ag does not dissociatively adsorb hydrogen, this decrease cannot be explained by a simple one-to-one site blocking mechanism unless Ag preferentially populates edges and corners, thereby reducing the number of Ru edge sites. Indeed, Monte Carlo simulations of Ru-Group IB metal catalysts predict that Group IB metal atoms preferentially populate corner and edge sites of ruthenium crystals. This evidence, taken together, suggests that adsorption occurs preferentially at Ru corner and edge sites, which act as portals onto basal planes. A model based on this portal theory for hydrogen adsorption onto supported ruthenium bimetallic catalysts has been developed using a rate equation approach. Specifically, the model accounts for the following features: (1) preferential adsorption through portals, (2) basal plane site-energy multiplicity, and (3) hydrogen spillover onto the support. A comparison of model predictions with experiment is presented for different concentration of Ag in Ru-Ag catalysts. The portal model of hydrogen adsorption can explain the observed decreased in the amount of hydrogen adsorbed on Ru-Ag catalysts. The model can be applied to understand the kinetics of ethane hydrogenolysis on Ru-Ag catalysts. The model is able to explain the change in the apparent order of hydrogenolysis reaction with respect to hydrogen from -1.4 to -2.4 when Ag is added to Ru/SiO2 catalyst.

    Online OSTI

  2. Silver catalysis in organic synthesis

    Newark : John Wiley & Sons, Incorporated, [2019]

    Silver catalysis has emerged as a powerful tool in the field of organic synthesis. This comprehensive book systematically explores the unique performance of silver catalysis, introducing all the recent progress of silver catalysis in organic synthesis. It clearly emphasizes the unique features of silver catalysis and provides the reaction mechanism involved. This two-volume book also provides vivid schematics and tables throughout to enhance the accessibility to the relevant theory and mechanisms. Silver Catalysis in Organic Synthesis begins with an introduction to Silver Chemistry before moving on to chapters covering: Silver-Catalyzed Cycloaddition Reactions; Silver-Catalyzed Cyclizations; Silver-Mediated Radical Reactions; Silver-Mediated Fluorination, Perfluoroalkylation and Trifluoromethylthiolation Reactions; Coupling Reactions and C-H Functionalization; Silver-Catalyzed CO2 Incorporation; Silver-Catalyzed Carbene, Nitrene, and Silylene Transfer Reactions; Asymmetric Silver-Catalyzed Reactions; Silver-Catalyzed Reduction and Oxidation of Aldehydes and Their Derivatives; Silver Complexes in Organic Transformations; and Silver Nanoparticles in Organic Transformations.Covers all the aspects of the recent achievements in silver catalyzed reactions Silver catalysis has emerged as a powerful tool in the field of organic synthesis. This comprehensive book systematically explores the unique performance of silver catalysis, introducing all the recent progress of silver catalysis in organic synthesis. It clearly emphasizes the unique features of silver catalysis and provides the reaction mechanism involved. This two-volume book also provides vivid schematics and tables throughout to enhance the accessibility to the relevant theory and mechanisms. Silver Catalysis in Organic Synthesis begins with an introduction to Silver Chemistry before moving on to chapters covering: Silver-Catalyzed Cycloaddition Reactions; Silver-Catalyzed Cyclizations; Silver-Mediated Radical Reactions; Silver-Mediated Fluorination, Perfluoroalkylation and Trifluoromethylthiolation Reactions; Coupling Reactions and C-H Functionalization; Silver-Catalyzed CO2 Incorporation; Silver-Catalyzed Carbene, Nitrene, and Silylene Transfer Reactions; Asymmetric Silver-Catalyzed Reactions; Silver-Catalyzed Reduction and Oxidation of Aldehydes and Their Derivatives; Silver Complexes in Organic Transformations; and Silver Nanoparticles in Organic Transformations. -Covers recently developed organic reactions catalyzed by silver, along with their reaction mechanism -Introduces many new reactions and mechanisms related to silver catalysis -Offers professionals and newcomers in the related fields a survey of new advances in silver catalysis in organic synthesis Silver Catalysis in Organic Synthesis will appeal to a wide readership including chemists, biochemists, pharmaceutical scientists, biomedical researchers, agriculture scientists, and graduate students in the related fields.

    Online Wiley Online Library

Guides

Course- and topic-based guides to collections, tools, and services.
No guide results found... Try a different search

Library website

Library info; guides & content by subject specialists
No website results found... Try a different search

Exhibits

Digital showcases for research and teaching.
No exhibits results found... Try a different search

EarthWorks

Geospatial content, including GIS datasets, digitized maps, and census data.
No earthworks results found... Try a different search

More search tools

Tools to help you discover resources at Stanford and beyond.