Physical and digital books, media, journals, archives, and databases.
Results include
  1. Experimental research in evolutionary computation [electronic resource] : the new experimentalism

    Bartz-Beielstein, Thomas
    Berlin ; New York : Springer, c2006.

    This book introduces the new experimentalism in evolutionary computation, providing tools to understand algorithms and programs and their interaction with optimization problems. It develops and applies statistical techniques to analyze and compare modern search heuristics such as evolutionary algorithms and particle swarm optimization. The book bridges the gap between theory and experiment by providing a self-contained experimental methodology and many examples.

    Online Ebook Central

  2. Experimental methods for the analysis of optimization algorithms

    Heidelberg ; New York : Springer, ©2010.

    In operations research and computer science it is common practice to evaluate the performance of optimization algorithms on the basis of computational results, and the experimental approach should follow accepted principles that guarantee the reliability and reproducibility of results. However, computational experiments differ from those in other sciences, and the last decade has seen considerable methodological research devoted to understanding the particular features of such experiments and assessing the related statistical methods. This book consists of methodological contributions on different scenarios of experimental analysis. The first part overviews the main issues in the experimental analysis of algorithms, and discusses the experimental cycle of algorithm development; the second part treats the characterization by means of statistical distributions of algorithm performance in terms of solution quality, runtime and other measures; and the third part collects advanced methods from experimental design for configuring and tuning algorithms on a specific class of instances with the goal of using the least amount of experimentation. The contributor list includes leading scientists in algorithm design, statistical design, optimization and heuristics, and most chapters provide theoretical background and are enriched with case studies. This book is written for researchers and practitioners in operations research and computer science who wish to improve the experimental assessment of optimization algorithms and, consequently, their design.In operations research and computer science it is common practice to evaluate the performance of optimization algorithms on the basis of computational results, and the experimental approach should follow accepted principles that guarantee the reliability and reproducibility of results. However, computational experiments differ from those in other sciences, and the last decade has seen considerable methodological research devoted to understanding the particular features of such experiments and assessing the related statistical methods. This book consists of methodological contributions on different scenarios of experimental analysis. The first part overviews the main issues in the experimental analysis of algorithms, and discusses the experimental cycle of algorithm development; the second part treats the characterization by means of statistical distributions of algorithm performance in terms of solution quality, runtime and other measures; and the third part collects advanced methods from experimental design for configuring and tuning algorithms on a specific class of instances with the goal of using the least amount of experimentation. The contributor list includes leading scientists in algorithm design, statistical design, optimization and heuristics, and most chapters provide theoretical background and are enriched with case studies. This book is written for researchers and practitioners in operations research and computer science who wish to improve the experimental assessment of optimization algorithms and, consequently, their design.

    Online SpringerLink

  3. Hybrid metaheuristics : 4th international workshop, HM 2007, Dortmund, Germany, October 8-9, 2007 : proceedings

    Berlin ; New York : Springer, ©2007.

    This book constitutes the refereed proceedings of the 4th International Workshop on Hybrid Metaheuristics, HM 2007, held in Dortmund, Germany, in October 2007. The 14 revised full papers presented were carefully reviewed and selected from 37 submissions. The papers discuss specific aspects of hybridization of metaheuristics, hybrid metaheuristics design, development and testing. With increasing attention to methodological aspects, from both the empirical and theoretical sides, the papers show a representative sample of research in the field of hybrid metaheuristics. Some papers put special emphasis on the experimental analysis and statistical assessment of results, some are also an example of the integration of metaheuristics with mathematical programming, constraint satisfaction or machine learning techniques.This book constitutes the refereed proceedings of the 4th International Workshop on Hybrid Metaheuristics, HM 2007, held in Dortmund, Germany. The 14 revised full papers discuss specific aspects of hybridization of metaheuristics, hybrid metaheuristics design, development and testing. With increasing attention to methodological aspects, from both the empirical and theoretical sides, the papers show a representative sample of research in the field of hybrid metaheuristics.

    Online SpringerLink

Guides

Course- and topic-based guides to collections, tools, and services.
No guide results found... Try a different search

Library website

Library info; guides & content by subject specialists
No website results found... Try a different search

Exhibits

Digital showcases for research and teaching.
No exhibits results found... Try a different search

EarthWorks

Geospatial content, including GIS datasets, digitized maps, and census data.
No earthworks results found... Try a different search

More search tools

Tools to help you discover resources at Stanford and beyond.