Physical and digital books, media, journals, archives, and databases.
Results include
  1. Charged particle dynamics in the presence of non-Gaussian Lévy electrostatic fluctuations [electronic resource].

    Washington, D.C. : United States. Dept. of Energy. Office of Science ; Oak Ridge, Tenn. : distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2016

    Full orbit dynamics of charged particles in a 3-dimensional helical magnetic field in the presence of -stable Levy electrostatic fluctuations and linear friction modeling collisional Coulomb drag is studied via Monte Carlo numerical simulations. The Levy fluctuations are introduced to model the effect of non-local transport due to fractional diffusion in velocity space resulting from intermittent electrostatic turbulence. The probability distribution functions of energy, particle displacements, and Larmor radii are computed and showed to exhibit a transition from exponential decay, in the case of Gaussian fluctuations, to power law decay in the case of Levy fluctuations. The absolute value of the power law decay exponents are linearly proportional to the Levy index. Furthermore, the observed anomalous non-Gaussian statistics of the particles' Larmor radii (resulting from outlier transport events) indicate that, when electrostatic turbulent fluctuations exhibit non-Gaussian Levy statistics, gyro-averaging and guiding centre approximations might face limitations and full particle orbit effects should be taken into account.

    Online OSTI

  2. On the anisotropic advection-diffusion equation with time dependent coefficients [electronic resource].

    Washington, D.C. : United States. Dept. of Energy. Office of Science ; Oak Ridge, Tenn. : distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2017

    The advection-diffusion equation with time dependent velocity and anisotropic time dependent diffusion tensor is examined in regard to its non-classical transport features and to the use of a non-orthogonal coordinate system. Although this equation appears in diverse physical problems, particularly in particle transport in stochastic velocity fields and in underground porous media, a detailed analysis of its solutions is lacking. In order to study the effects of the time-dependent coefficients and the anisotropic diffusion on transport, we solve analytically the equation for an initial Dirac delta pulse. Here, we discuss the solutions to three cases: one based on power-law correlation functions where the pulse diffuses faster than the classical rate ~t, a second case specically designed to display slower rate of diffusion than the classical one, and a third case to describe hydrodynamic dispersion in porous media

    Online OSTI

  3. A statistical study of gyro-averaging effects in a reduced model of drift-wave transport [electronic resource].

    Washington, D.C. : United States. Dept. of Energy. Office of Science ; Oak Ridge, Tenn. : distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2016

    Here, a statistical study of finite Larmor radius (FLR) effects on transport driven by electrostatic driftwaves is presented. The study is based on a reduced discrete Hamiltonian dynamical system known as the gyro-averaged standard map (GSM). In this system, FLR effects are incorporated through the gyro-averaging of a simplified weak-turbulence model of electrostatic fluctuations. Formally, the GSM is a modified version of the standard map in which the perturbation amplitude, K0, becomes K0J0($\hat{p}$), where J0 is the zeroth-order Bessel function and $\hat{p}$ s the Larmor radius. Assuming a Maxwellian probability density function (pdf) for $\hat{p}$ , we compute analytically and numerically the pdf and the cumulative distribution function of the effective drift-wave perturba- tion amplitude K0J0($\hat{p}$). Using these results, we compute the probability of loss of confinement (i.e., global chaos), Pc provides an upper bound for the escape rate, and that Pt rovides a good estimate of the particle trapping rate. Lastly. the analytical results are compared with direct numerical Monte-Carlo simulations of particle transport.

    Online OSTI

Guides

Course- and topic-based guides to collections, tools, and services.
No guide results found... Try a different search

Library website

Library info; guides & content by subject specialists
No website results found... Try a different search

Exhibits

Digital showcases for research and teaching.
No exhibits results found... Try a different search

EarthWorks

Geospatial content, including GIS datasets, digitized maps, and census data.
No earthworks results found... Try a different search

More search tools

Tools to help you discover resources at Stanford and beyond.