Catalog
 Results include

The shortest path method for seismic ray tracing in complicated media = De kortsteroutemethode voor seismische raytracing in gecompliceerde media
Moser, Tijmen Jan, 1963[Utrecht : Faculteit Aardwetenschappen der Rijksuniversiteit te Utrecht], 1992. 
Walking with Christiaan Huygens : from Archimedes' influence to unsung contributions in modern science
Moser, Tijmen Jan, 1963Cham, Switzerland : Springer Nature Switzerland, [2024]"Dutch scientist Christiaan Huygens (16291695) left an indelible mark on the fields of mathematics, physics, astronomy, and geophysics. Despite his groundbreaking contributions, history has often overlooked his pivotal role. While two of the most famous achievements in physics are Newton's theory of gravity and Einstein's general theory of relativity, less wellknown is that Huygens provided central elements to these theories. This book stands to correct that deficit. For example, we show how Huygens used symmetry arguments to derive conservation laws for momentum and for energy, and what Einstein later called the principle of equivalence to derive the formula for centrifugal force. In 1689, Huygens visited Newton. Together, they walked the streets of London. Newton had recently finished his masterpiece, Principia, expounding his laws of motion and the law of universal gravitation. Huygens had essentially completed his life's work by then, building on Archimedes, Leonardo da Vinci, Galileo, Descartes, Fermat, Pascal and his own ingenuity. He had established fame as an instrument maker (telescope, pendulum clock, planetarium). He had invented the 31 tone system. He had pioneered the first principles of remote sensing. He had discovered the rings of Saturn. He had formulated the wave theory of light. What would walking with Christiaan reveal? This book gives the result in nine chapters, namely: spontaneous order, the speed of light, Huygens' principle, the telescope, the pendulum clock, HuygensFresnel principle, special relativity, centrifugal force, and curvature. In addition, there is a chapter titled What Huygens could have written on diffraction, and a chapter titled Huygens and Geophysics. Mentally walking with Christiaan, browsing his collected works  a true treasure trove for puzzle enthusiasts  and rethinking his ideas creates a vivid impression of scientific life in the 17th century, an appreciation that it is remarkably similar to ours, and an understanding of Huygens' significant and lasting contributions to science." 

Basic wave analysis
Robinson, Enders A., 1930Tulsa, OK : Society of Exploration Geophysicists, 2020The purpose of this book is to provide the information required for understanding the fundamental aspects of the elaborate computer processing schemes prevalent in exploration geophysics. Basic Wave Analysis has three parts. Part 1 addresses velocity analysis. The correct determination of velocity is the most important problem in seismic exploration, and an understanding of velocity analysis is a valuable asset for a geophysicist. Part 2 discusses raypath analysis. Raypaths provide a geometrical picture of how waves travel, so that a person can visualize raypaths in their imagination. Geometrical pictures are as important in seismology as they are in optics. Part 3 addresses wavefront analysis. A person cannot easily visualize traveling wavefronts in their imagination; however, a computer can follow their motion, and give the geophysicist the final outcome. Knowledge of wavefront analysis helps a geophysicist understand many modern computer methods. This book has not been written to address advanced subjects. Rather, it concentrates on the basic concepts of Fermat and Huygens to explore and understand basic wave analysis. This book is based upon inventive science. It deals with ideas, and not with numerical algorithms. It does not explain the details the many migration and inversion methods use, but it does provide readers with the tools needed to make those topics more understandable. The three parts of this book are in the order of increasing difficulty, and the most important part is Part 1, because velocity analysis is central to every seismic investigation
Online Ordering information:
Guides
Library website
Exhibits
EarthWorks
More search tools
Tools to help you discover resources at Stanford and beyond.