Physical and digital books, media, journals, archives, and databases.
Results include
  1. Stochastic modeling and control of autonomous mobility-on-demand systems

    Iglesias, Ramón Darío
    [Stanford, California] : [Stanford University], 2019.

    The last decade saw the rapid development of two major mobility paradigms: Mobility-on-Demand (MoD) systems (e.g. ridesharing, carsharing) and self-driving vehicles. While individually impactful, together they present a major paradigm shift in modern mobility. Autonomous Mobility-on-Demand (AMoD) systems, wherein a fleet of self-driving vehicles serve on-demand travel requests, present a unique opportunity to alleviate many of our transportation woes. Specifically, by combining fully-compliant vehicles with central coordination, AMoD systems can achieve system-level optimal strategies via, e.g., coordinated routing and preemptive dispatch. This thesis presents methods to model, analyze and control AMoD systems. In particular, special emphasis is given to develop stochastic algorithms that can cope with the uncertainty inherent to travel demand. In the first part, we present a steady-state modeling framework built on queueing networks and network flow theory. By casting the system as a multi-class BCMP network, the framework provides analysis tools that allow the characterization of performance metrics for a given routing policy, in terms, e.g., of vehicle availabilities, and first and second order moments of vehicle throughput. Moreover, we present a scalable method for the synthesis of routing policies, with performance guarantees in the limit of large fleet sizes. The framework provides a large set of modeling options, and specifically address cases where the operational concerns of congestion and battery charge level are considered. We validate our theoretical results on a case study of New York City. In the second part, we leverage the insights provided by the steady-state models to present real-time control algorithms. Specifically, we cast the real-time control problem within a stochastic model predictive control framework. The control loop consists of a forecasting generative model and a stochastic optimization subproblem. At each time step, the generative model first forecasts a finite number of travel demand for a finite horizon and then we solve the stochastic subproblem via Sample Average Approximation. We show via simulation that this approach is more robust to uncertain demand and vastly outperforms state-of-the-art fleet-level control algorithms. Finally, we validate the presented frameworks by deploying a fleet control application in a carsharing system in Japan. The application uses the aforementioned algorithms to provide, in real-time, tasks to the carsharing employees regarding actions to be taken to better meet customer demand. Results show significant improvement over human based decision making.

  2. Techniques for efficient and responsible operation of mobility systems

    Tsao, Matthew Wu
    [Stanford, California] : [Stanford University], 2022

    Transportation is a necessary resource for many societies around the world. While advances in data science provide promising tools for personalized, adaptive and more efficient mobility services, they also bring new challenges in equal measure. In this dissertation I will discuss algorithm design for two such challenges faced by modern mobility services. First, I will discuss techniques for operating ridehailing and ridesharing systems in settings with incomplete information, which often arise due to the on-demand nature of such services. In particular, I will show both in theory and in practice how ideas from model predictive control, online optimization and machine learning can be used to effective serve existing customers while also adequately preparing for unknown future demand. Second, I will highlight some privacy concerns that arise from the sharing of mobility data that is often required for modern data-driven algorithms. To address some of these concerns, I present techniques based on multiparty computation and differential privacy to effectively use location data to improve routing services in a privacy-preserving way

  3. A real-time framework for kinodynamic planning with application to quadrotor obstacle avoidance [electronic resource]

    Allen, Ross E.

    This thesis presents a full-stack, real-time planning framework for kinodynamic robots that is enabled by a novel application of machine learning for reachability analysis. As products of this work, three contributions are discussed in detail in this thesis. The first contribution is the novel application of machine learning for rapid approximation of reachable sets for dynamical systems. The second contribution is the synthesis of machine learning, sampling-based motion planning, and optimal control into a cohesive planning framework that is built on an offline-online computation paradigm. The final contribution is the application of this planning framework on a quadrotor system to produce, arguably, one of the first demonstrations of fully-online kinodynamic motion planning. During physical experiments, the framework is shown to execute planning cycles at a rate 3 Hz to 5 Hz, a significant improvement over existing techniques. For the quadrotor, a simplified dynamics model is used during the planning phase to accelerate online computation. A trajectory smoothing phase, which leverages the differentially flat nature of quadrotor dynamics, is then implemented to guarantee a dynamically feasible trajectory. An event-based replanning structure is implemented to handle the case of dynamic, even adversarial, obstacles. A locally reactive control layer, inspired by potential fields methods, is added to the framework to help minimizes replanning events and produce graceful avoidance maneuvers in the presence of high speed obstacles.


Course- and topic-based guides to collections, tools, and services.
No guide results found... Try a different search

Library website

Library info; guides & content by subject specialists
No website results found... Try a different search


Digital showcases for research and teaching.
No exhibits results found... Try a different search


Geospatial content, including GIS datasets, digitized maps, and census data.
No earthworks results found... Try a different search

More search tools

Tools to help you discover resources at Stanford and beyond.